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Damage Detection for Composite Plates Using Lamb
Waves and Projection Genetic Algorithm

Y. G. Xu,*G. R. Liu," and Z. P. Wu*
National University of Singapore, Singapore 119260, Republic of Singapore

A method of damage detection for composite plates using Lamb waves and a projection genetic algorithm
is investigated in this study. This method first formulates the damage detection as an optimization problem of
minimizing the error between the measured and calculated surface displacement response derived from Lamb
waves. The calculated response is obtained by using the strip element method with the trial crack parameters
(location, size). Then a projection genetic algorithm is used to solve the optimization problem and thus identify
the actual crack parameters. The projection genetic algorithm is developed from the hybridization of the modified
micro-genetic algorithm with a projection operator. It has an excellent convergence performance, taking only
9.9 ~ 14.2% of the number of function evaluationsrequired by the conventional micro-genetic algorithm to obtain
the global optima for six benchmark functions. Numerical examples are presented to verify the proposed method
for detection of cracks inside composite plates. The maximal error of detected crack parameters is — 4.3 % for four
simulated cases, which is achieved by running only 60 generations of projection genetic algorithm.

Nomenclature

Ag, A, A, M = coefficient matrices

a.,d.,1. = horizontal location, depth, and length
of crack, respectively

c = better individual of ¢; and ¢,

cy, Cy = individuals obtained from local
optimizer

D,, d[kj = elastic constant matrix and elastic
constants for kth element, respectively

E(a.d.l.) = error of displacement response, also

used as fitness function

calculated and measured surface
displacementresponses at ith point,
respectively

JAO) fitness function or objective function
H,m = thickness of plate and number

of laminates, respectively

initial random number seed

position of gene that is different from
that in chromosome under comparison
stiffness matrix

differential operator matrix

population size

» number of points at surface of plate
number of parameters of each individual
number of genes in jth substring
correspondingto jth parameter
numbers of generationsrequired
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means of n,Ga, MmGas PhGa» T€Spectively
population of individuals, offspring,
and updated offspring at jth generation,
respectively.

possibilities of crossover and mutation
operation, respectively

ith individual and ith offspring at jth
generation, respectively

NpGAs MhGAs MmGA

P(j), C(j), Cu())

Pcrosss Pmutate

Piis Gi, L =1,..., N

Pl P, P, = best individual, second best individual
at jth generation and best individual
at (j — 1)th generation, respectively
0,V = vectors of external load amplitude and
displacement amplitude, respectively
q(t), qo, ® = time-harmonicload, load amplitude
and frequency, respectively
R, S = vectors of stress and equivalent external

force, respectively

ratios; Ryga = (5 X 7156a) /(7 X lipga),
Ryga= (X% ﬁpGA)/(7 X MinGa)

time

vector of displacements at kth element
displacementsin x and z direction,
respectively

RmGA, RhGA

t =
U,
u(x, z), wx, z)

XY,z = coordinate system for composite plate
o,p = coefficients of extrapolation
and interpolation, respectively
y = threshold to define population
convergence
§(1) = Dirac’s impulse function
n, I'(x) noise length and noise at point x,
respectively
I. Introduction

AMAGE detection of composite structures has become a very

active topic in recent years.! Varied detection techniques have
been developed so far,!:> among which elastic waves based meth-
ods have been receiving the increasing attention.> A lot of work has
been carried out to reveal the relationship between the character of
elastic wave scattering and the location and size of cracks inside
the composite plates. For example, Karunasena et al.* studied the
plane-strain-wavescattering by cracks and obtained the dispersion
equationsfor Lamb waves. Datta etal.’ investigatedthe scattering of
Lamb waves caused by cracks and flaws in plates. Karim et al.5 did
the similar work by combining the finite element method and guided
wave mode expansions. Liu et al.” studied the transient scattering of
Lamb waves by a surface-breakingcrack using both analytical and
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experimental methods. Liu and colleagues®® and Lam et al.'” inves-
tigated the characterizationof both horizontal and vertical cracks in
the composite plates subjected to a moving or fixed source load.
All of these works have shown that the scattered elastic waves are
really related to the location and size of cracks inside the composite
plates. Thus, if a scattered elastic wave field can be experimen-
tally measured, detection of the damages in composite plates can
be transferred as an optimization problem of finding a set of crack
parameters (location, size) that yields the best match with the mea-
sured elastic wave field.

Astherelationshipbetween the crack parametersand the scattered
elastic wave field is hardly possible to express in an explicit form
for such complex a dynamics problem of wave propagation, the
search space of crack parameters is generally highly nonlinear, and
multimodal, advanced optimization algorithms are thus critical to
solve this complex problem and obtain the corresponding detection
results.

Hybrid genetic algorithms (GAs) have been known as a powerful
tool to solve the nonlinear, multimodal, and nondifferentiableprob-
lems in recent years.!! A genetic algorithmis good at global search
but slow to converge, whereas a local search is good at fine tuning
of the solution but often falls into local optima. The hybrid GAs
of combining the conventional GAs and local search techniques
can compensate their individual weak points and outperform either
one individually. With the development of varied hybrid GAs,!!~1?
the present authors have proposed an effective algorithm called an
hGA.!* This algorithm is derived from the hybridization of a mod-
ified micro-genetic algorithm (mGA) with a local optimizer. The
“micro” means this genetic algorithm uses only a very small pop-
ulation size (typically 5 ~ 8).!% The local optimizer is one of direct
searchtechniques.It finds the evenbetter solutionsby jumping along
the move direction of best individual. One individual in the GAs
means a possible solution of optimization problem, that is, a set of
crack parameters for the present detection problem. Test functions
and application examples have shown that this hGA has an excel-
lent convergence performance over the conventional GAs without
incorporating with the local optimizer and also has a good com-
putational efficiency when compared with the other hybrid GAs.!*
Nevertheless, there is likely a situation in which this hGA does not
perform particularly well. That is, when the individual pj? is identi-
cal to pj? _, at the jth generation in the evolution process the local
optimizer fails to find the new individuals different from those in
the C(j). This would decrease the population diversity and also in-
crease the unnecessary evaluations for the same individuals in one
generation.

In this study, improvements for the previously proposedhGA are
made to overcome these problems and furtherincrease the searching
efficiency of algorithm, including the following:

1) The local optimizer is improved by using an alternative way to
construct the move direction of beset individual so that it can find
the even better individuals different from those in the C(j) with
a significantly increased possibility. That is, the move direction of
best individual is made by using either p? and p’_, or p/ and p}
when p is identical to p? _,.

2) Only the best one of two new individuals obtained from the
local optimizer is used to replace the worst individual in the cur-
rent C(j) to implement the hybridizationprocess. This is obviously
beneficial to avoiding the decrease of population diversity caused
by the insertion of two new individuals that are close to each other
and also beneficial to decreasing the population size.

3) Mutation operation is employed in the evolution process to in-
crease the population diversity. This is especially beneficial for the
case the improved local optimizer fails to find the new individuals
different from those in the C(j) when pj?, pj? _1>and p; areall iden-
tical. This new hybrid GA is termed as a projection GA (pGA) for
the improved local optimizeris taken as a projection operator in the
evolution process. Performance test using six benchmark functions
has shown that this pGA has excellent convergence performance
over the conventional mGA as well as the previous hGA.

Detection method based on the use of this pGA is verified by
numerical examples. It has been found that this method is very
effective and efficient for the damage detection of composite plates.

II. Formulation of Damage Detection
as Optimization Problem

A. Statement of the Problem

Figure 1 shows a composite plate under investigation. It is
assumed to occupy the region —oo <(x,y)<oc and —H/2 <
z < H/2. A horizontal or vertical crack is hidden inside this plate,
whereby its location and size are defined by three parametersa,, d,,
and /.. The crack is considered to be infinite in the y direction to
simplify the problem into a two-dimensional problem.

A time-harmonicload g () is applied on the uppersurface of plate
in order to excite the elastic waves propagatedinside this plate. This
load is also assumed not to vary in the y direction. It is expressedas

q(t) = g™ (1)

The surface displacementresponse consists of a number of Lamb
waves scattered by the hidden cracks.® It carries the information
aboutthe location and size of crack and thus can be used as a feature
information for damage detection.

B. Objective Function

With the use of well-known error norms,'° the crack detection
problem is formulated as an optimization problem with the follow-
ing objective function:

Np
min E(ae, de. lo) = ) | filac, dele) = f"

i=1

i=1,....,N, (2a)
or
1
Np 3
2
min E(ac,de 1) = | D | filac dele) = £
i=1
i=1,...,N, (2b)
S.t.
0<a.<10H, 0<d.<H, 0<lI. <10H
for horizontal crack
0<a. <104, 0<d.<H, 0<l. <H

for vertical crack

Comparatively, Eq. (2a) is more sensitive to the spatial distribution
of data, whereas Eq. (2b) is more stability in noisy environment.!6
Both of them mean that if a set of crack parameters, a,, d,, and [,
can generate the displacementresponse very close to the measured
value, this set of crack parameters can be taken as the actual crack

q()
a; I, 0] 4, i 1* layer
Z Crack
H|IZ ] X o7
[ v [
| | m-th layer

a) Horizontal crack

q(?)
!

ac d, 1* layer

S T
H X ! o
F,, Cragke B0 7 L e
m-th layer

b) Vertical crack

Fig. 1 An m-layer composite plate with a embedded crack.
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Fig. 2 Search space for two crack parameters within domain a. +
1, <10H,d.=1.67H.

parameters. It is notable that the search space for the actual crack
parameters is very complex. As an example, Fig. 2 presents a two-
dimensionalsketch of E (a,, d., I.) calculated from Eq. (2b), where
the true crack parameters are a, =4H,d. =0.167H, and [, =2H.

C. Briefing on Calculation of f;(a,,d,, I.)

As it is hardly possible to calculate f;(a., d., [.) by an analytic
expression for such complex a dynamic problem of wave propaga-
tion, numerical methods had to be used. The strip element method
(SEM), being verified to be especially effective for mechanical anal-
ysis of composite plates,!” has been used to this end. The procedure
of using the SEM to calculate f;(a,., d.,[.) is briefly outlined as
follows:

1) Divide the inspected domain of composite plate into some strip
elementsin the z direction.In each strip element, saying the element
k, and expressing the system of governing different equations (no
body force) as

oUy — LD LU, = 0 (3)

where Ul = {u(x, z), w(x, 2)}; D, = {d[kj}, i, j=1,2,3; L canbe
found in Ref. 17.

2) Express U, in a discrete form using the interpolationfunctions.
Then the principle of virtual work is applied for the discretized gov-
erning equation. This results in a one-dimensional-reduwed differ-
ential equation. By assembling these differential equations for all
of the strip elements, a set of second-order approximate govern-
ing differential equations for the inspected domain is obtained as
follows:

a°V oV

ey +Ala + A,V — MV 4)

0=-4

Both Q and V are acting on the element node lines along the x
direction. Matrices A; (i =0, 1, 2) and M can be found in Ref. 17.

3) Solve the preceding equation in an analytical method. This
resultsin a set of linear equationsthat gives the relationshipbetween
the displacements V and stresses R at the nodal points on the vertical
boundaries.

R=KV+S %)

Matrix K can been also found in Ref. 9.

4) For the plates hiding the horizontalcracks, it is usually divided
into four subdomains, I, II, III, and IV, as shown in Fig. l1a. Each
subdomain corresponds to a set of equations similar to Eq. (5).
By assembling all of the four sets of equations and solving the
integrated equation, elastic wave field and the surface displacements
are obtained

5) For the plates hiding the vertical cracks, it is usually divided
into two subdomains, I and II, as shown in Fig. 1b. The surface
displacements are obtained similarly to the horizontal crack case.!°

III. Projection Genetic Algorithm (pGA)
A. Description of the pGA
1. Modified mGA

mGA is one of improved GAs. It usually operates on a very
small population. The small populationvery oftenconvergesin a few
generations. When the convergencetakes place, a restart strategy is
implemented to generate a new population with the same size. This
new population consists of the best individual from the previously
converged generation and other randomly generated ones. Gener-
ally, mGA does not require the use of mutation operation.*>!° The
genetic diversity is introduced and maintained by using the restart
strategy.

The modified mGA uses an improved criterion to define the popu-
lation convergence!* This new criterion takes into account not only
the number of the genes that are different from each other in two
compared individuals but also their positions in the chromosome. It
is expressed as

N—-1 n Ngj 2ip
ZZZ(N—I)Z?:Ingj(ngj-i—l)Sy ©

k=1 j=1lip=1

15,18

i, counts from right to left for the substrings under comparison.
Generally, y is recommended to be within 5 ~ 10% (Ref. 14).

2. Projection Operator

Projectionoperatoraims to find an evenbetterindividualby jump-
ing along the move direction of best individual at each of genera-
tions so as to improve the convergence of algorithm. It is a direct
local optimizer and requires no use of function evaluations. Gen-
erally, this direct optimizer is less efficient than the conventional
gradient-basedoptimizersin the cases where the objective functions
are differential?® However, it is a preferable choice in the hybrid
GAs because of its simplicity in implementation and suitability for
many practical problems, where the derivative information is often
different, computationally expensive, or even impossible to obtain.

Construction of the move direction of best individual is a key of
implementing projection operator. In this study an alternative way
is employed, in which pj? and pj?_l are used only if they are not
identical. Otherwise, pj? and p; should be used instead. This means
that the better individual ¢ is obtained by

f(e) =max{f(c)), f(c2)}, cele, o) (72)

o =pl+a(pt —p) (7b)
. b b
Cz—pj_1+ﬂ(l7j_l7) (7¢)
B I ph#p,
p= s b_ b
P pi=r_, (7d)

where o and B are recommendedto be within 0.1 ~05and 0.3~ 0.7,
respectively. It is clear that « and § decide how far the newly gen-
erated individual ¢ is from the present best individual pj?. Selection
of o and B has an obvious effect on the convergence process of
pGA. Detailed discussionon this point is addressedin the following
examples.

3. Hybridization of Modified mGA with Projection Operator

This can be outlined as follows:

1) Let j=0, randomly initialize P(j)=(p;i, Pj2, ..., Pjn)-
Every individual p;(i =1, ..., N) is a possible solution. It is a set
of crack parameters for the present detection problem.

2) Evaluate the fitness or objective function values of P(j).

3) Check the termination condition. If “yes,” the process ends.
Otherwise, j = j + 1 and go to the next step.

4) Carry out the conventional genetic operations: niching, selec-
tion, crossover, mutation, and elitism. These operations result in a
new generationof solutions. Details on theiroperationscan be found
in the general literature on GAs.!!12:13

5) Generate offspring C(j)=(c;1,¢j, ..., c;x) and evaluate
their fitness values. Each of offspring is one of newly generated
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=0, initiate P(7)

Evaluate P(j)

[ Selection ]
[Generate and Evaluate C( j)]

Generate Cy())

LMove direction of best individual]

[Obtain and evaluate ¢;, c;]

Select ¢

Population
convergence ?

Fig.3 Flowchart of the pGA.

solutions, that is, a new set of crack parameters for the detection
problem. They are expected to be more close to the global optimum
than those in the P(j).

6) Carry out the projection operator. a) construct the move di-
rection of best individual using Eq. (7b) ~(7d); b) generate the
individuals ¢y, ¢,, and evaluate their fitness values; and c¢) select the
better individual c.

7) Replace the worst individualin the C(j) with the individual c.
This results in a updated offspring C,(j) =(c;1,¢j2, ..., €, ...,
CiN—1)-

' 8) Check whether there occurs the populationconvergencein the
C,(j). If “yes)” implement restarting strategy. Otherwise, go back
to step 3.

This process is depicted in Fig. 3. Basically, this pGA takes the
same strategy in incorporatingthe local optimizerinto the basic loop
of mGA as that done in the previous hGA.' It thus maintains the
mainadvantagesofhGA: 1) muchless computationeffortis required
in the projection operator: 2) the incorporated projection operator
affectsthe evolutionprocessin a self-adaptivemanner so as to ensure
that the searching is global and the converging is fast; and 3) the
hybridization process is straightforward so that it is conventionalto
use in engineering practice.

B. Performance Test
1. Test Functions

Six benchmark functions are used to test the proposed pGA.'
They are

2
FL:f (1, x0) = [ [ sin5.17x, +0.5)°
i=1
—410g 2(x; —0.0667)*
0.64
7w = 3.14159,

X €X

0<ux < 1.0,

5 5
F2:f (1, x0) = Y _icos[(i + Dy +i1 Y i cos[i + Dxy + ]

i=1 i=1

—10<x; <10, i=1,2

P3fGnm) = -2 2 8
: X1, X —_—_— — —_ 2
PR T T 0T 2
—10<x; <10, i=1,2
: 2
Fa:f(xy, xp, x3) = Z I:()ﬁ —X[z) + (x; — 1)2:|
i=1
-5<x <5 =123
: 2
F5:f(x1, X3, x3) = Z [(axl - bx[Z) + (cx; — d)z:l
i=1
0.999 <a,b,c,d <1.00lrandomly, =5 <x; <5, i=1,2,3

5

1
F6:f(x, x5, X3, x4) =
) = e

j=1

d[4,5]=(4,4,4,4;1,1,1,1;8,8,8,8;6,6,6,6;3,7,3,7),

¢[5]1=(0.1,02,0.2,0.4,04), 0<x; <10, i=1,2,34

These functions have been specially designed for testing various
GAs. They have many local optima and one or more global optima
(Table 1). As an example, Fig. 4 shows the search space of function
F1.

2. Convergence Performance of the pGA

Convergence performance of the pGA is investigatedin terms of
the number of generations(or times of functionevaluations) required
to obtain the global optimum for the above benchmark functions.
To make the results meaningful statistically, each of benchmark
functions is tested for 40 times using the pGA with the different

Table1l Convergence performance of the pGA and comparison

with the hGA and mGA
Global Function Ruga, Rmga.,
No. optimum value  7pGA MhGA mGA % %

F1 (0.0669, 0.0669) 1.0 158 189 984 59.7 115
F2 (5.4829,—-1.4265* —186.73 185 348 1136 38.0 11.6
F3 (—1.0467,0.0) —0.352 175 437 983 286 127
F4 (1.0,1.0, 1.0) 0.0 261 544 1561 343 119
F5 (1.0,1.0, 1.0) 0.0 229 583 1648 28.1 9.9
F6 (4.0,4.0,4.0,4.0) —10.153 652 1195 3271 39.0 142

40ne of global optima.

08

Fig.4 Function F1.



1864 XU, LIU, AND WU

combinations of «, 8, and i4,n. These combinations are sampled at
a=0.1, 0.3; =0.5, 0.618; and iy, =—100, —5000, —10,000,
—15,000, —20,000, —30,000, —35,000, —40,000, —45,000, and
—50,000 using the full fractional combination method. The genetic
operatorsand other operation parametersused are uniformcrossover
of Peross = 0.5, mutation of pp,e = 0.02, tournamentselection, one
child, niching,'® elitism,!> N =5, and y =5%. Table 1 shows the
mean number of generations (7,4 ) to obtain the global optimum
for six benchmark functions.

To have appropriate comparison, the hGA and mGA are also
run for 40 times with genetic operators and operation parameters
similarly to those of pGA (except for N =7) for the six functions
just used. The corresponding results (7,ga, mga) are also shown
in Table 1. It can be found that the present pGA demonstrates a
much faster convergence than the conventionalmGA as well as the
preceding hGA. It takes only 9.9 ~ 14.2% (or 28.1 ~ 59.7%) of the
number of function evaluations required by the mGA (or the hGA)
to obtain the global optimum for the given benchmark functions.
Figure 5 shows the convergence processes of functions F3 and F6
using the pGA againstthe hGA and mGA, from which the evolution
processes can be seen clearly.

3. Effect of the Mutation Operation

Traditionally, the mutation operation is not used in the
mGA. 5181 However, it is recommended to apply in the pGA for
increasingthe populationdiversity. For testing the effectof the muta-
tion operation, the preceding benchmark functions are investigated
using the pGA with and without mutation operation, respectively.
It can be found from Table 2 that the pGA with the mutation opera-

Table 2 Effect of mutation operator on the performance of pGA?

Scheme F1 F2 F3 F4 F5 F6
npGA, Mutation 97 126 104 173 170 412
npGA, N0 mutation 107 156 116 352 417 >1000
Ratio, % 90.7 80.8 89.7 49.1 40.8 <41.2

a4 =0.2, 8=0.5, and i gum = —10,000.

0.5
03} Fﬁ fd_“_
2
5 |- .
” | i/
§ 0.0 1| e mGA
E03J ——— hGA
’ ll pGA
2054 ' : ' :
0 30 60 90 120 150

Number of generations

Function F3

12.0
—

9.0 [
g f_j ................ mGA
E /
é 6.0 J m—— hGA
£ | pGA
i [ £

301 l

-
0.0 L L L L

0 200 400 600 800 1000
Number of generations

Function F6

Fig.5 Convergence processes of the pGA for benchmark function F3
and Fe.

Table 3 Effect of coefficient o on the performance of pGA?

o 01 02 03 04 05 06 07 038

npGA» Mutation 147 86 50 119 38 81 63 56
npGa, no mutation 149 109 86 130 44 91 74 91
Ratio, % 98.7 789 89.3 91.5 864 89.0 85.1 61.5

2For function F1 where 8 =0.5 and igqyy, = —10,000.

Table 4 Effect of coefficient 3 on the performance of pGA?

B 02 03 04 05 06 07 08 09

npGA, Mutation 486 217 70 8 80 164 372 243
npGa, N0 mutation 121 106 98 109 94 74 109 99
Ratio, % 401.6 204.7 71.4 789 85.1 221.6 341.3 2455

aFor function F1 where « = 0.2 and igyy, = —10,000.

Table 5 Effect of the random number seed ig,,,, on the performance
of pGA and mGA

iqum(x —10%) 1 50 100 150 200 300 350 400 450 500

npGA, Mutation 245 164 97 150 196 229 60 175 67 197
npGa, N0 mutation 279 230 107 77 186 238 185 128 395 199

MmGA 823 2741 1229 1512 1105 240 1043 415 526 208
1.0
0.8
E
- — - 05
0
2 -—— 06
£ 0.4
e ——— 03 e 0.7
0.2 —-— 08

0.0 . . . . \ .
0 20 40 60 80 100 120

Number of generations
Effect of . 3=0.5 and igyy, =— 10,000

1.0 = — -
==d -
, - [

0.8
E 02 —— -

50.6 B =0. 0.6
§04 ————— 03 ---- 07
= ——— 04 e 0.8

<
[
'
'
|
<
W
'

0.9

0.0 . .
20 40 60 80 100 120 140 160 180

Number of generations
Effect of 3. a=0.2 and igyy, =— 10,000

Fig. 6 Effects of coefficients o and 3 on the convergence processes of
pGA for benchmark function F1.

tion finds the global optimum faster than that without the mutation
operation for all of the benchmark functions. Further investigations
on the effect of the mutation operation associated with the variation
of a, B, and ig,, are also performed, and the results are given in
Tables 3-5.

4. Effect of the Coefficients o and

To study the effectof o« and g on the pGA, benchmark functionF1
isinvestigatedagain using the differenta and B, but the same genetic
operators and other operation parameters (ig,, = —10,000). Two
schemes of the pGA with and without mutation operation are used.
Ithas been found from Tables 3 and 4 thatn g, correspondingto the
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differenta (@ =0.1~0.8, 8 =0.5) ranges from 38 to 147, whereas
that correspondingto the different 8 (8 = 0.2 ~0.9,« =0.2) ranges
from 70 to 243. Figure 6 shows their convergence processes.
Further investigation has shown that it is difficult to specify ex-
actly the value of & and B that can get the best convergence per-
formance for all of the benchmark functions. However, it has been
foundthatany combinationof « and 8 alwaysresultsin the pGA hav-
ing a significantly fast convergenceover the conventional mGA us-
ing the same geneticoperatorsand operation parameters. Itis recom-
mended in this study that « and g are within 0.1 ~05and 0.3~ 0.7,
respectively.Our favoritechoiceisa = 0.1 ~0.3and 8 =0.5, which
generally ends in good results in our numerical experiments.

5. Effect of the Random Number Seed iqym

A total of 10 different iy, has been used to investigate the con-
vergence performance of pGA. The 10 iq4, are all selected to be
negative according to the suggestion made by Carroll'>!° in a pub-
lic version (1.7) of the GA program. To show the effect of igym,
Table 5 presents the corresponding n,G and n,g, for function F1
when pGA and mGA use the different ig,y. In these investigations,
both the genetic operators and the operation parameters remain the
same (¢ =0.2, 8 =0.5). From Table 5 it can be found that the pGA
isnot as sensitive as the mGA to i4,n. The ratio of the maximal r,g5
to the minimal 7,64 is about four. This feature makes the pGA more
robust to use in practice.

IV. Numerical Examples

A composite plate [C90/G45/G-45], with six symmetrically
stacked layers is used in this study to demonstrate the detection
of crack using the proposed pGA. C and G stand for carbon/epoxy
and glass/epoxy layers, respectively. The next number denotes the
fiber orientation with respect to the x axis. Material constants of
carbon/epoxy and glass/epoxy are given in Table 6.

Each layer in this plate is divided into four strips in the z di-
rection for the use of the SEM. The horizontal cracks are assumed
to locate at the junctions of two adjacent strip elements, whereas
the vertical cracks are assumed to be throughoutseveral successive
strip elements. All of them are within the region 0 <x < 10H and
0<z<H.

We assumed that there are four sets of surface displacement re-
sponsesexperimentallymeasured at 250 points on the surface of this
plate (Fig. 7), corresponding to four crack cases. These responses
are excited by an external load g (¢) at x =0 having the amplitude
go =1 and the normalized frequency w = [3.144/(c44/0)]1/H. The
PpGA is used to detect these “unknown” crack parameters from the
“measured” responses.

The true crack parameters are (I) horizontal crack: a. = 6.0H,
d.=0.25H, I,=1.0H; (II) horizontal crack: a.=4.0H, d.=

0.4

Crack case I

Amplitude of displacement response

Horizontal location X/H

Fig.7 “Experimentally”’ measured displacement responses on the sur-
face of plate for four crack cases (noise length is 5%).

Table 6 Material constants of composite plate

Component E;,GPa E;,GPa Gy, GPa vp» V23 0, g/cm3

Carbon/epoxy 142.17  9.255 4795 0.3340 0.4862 1.90
Glass/epoxy 38.49  9.367 3.414  0.2912 0.5071  2.66
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Fig. 8 Convergence processes of the pGA for detection of four simu-
lated crack cases.
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0.333H, I.=1.2H; (IID) vertical crack: a. =4.0H, d. =0.166H,
1.=0.667H; and (IV) vertical crack: a,=5.0H, d.=0.125H,
l.=0.75H. The measured displacementresponses are actually sim-
ulated using the SEM code for these true crack parameters. A noise
I" (x) defined later is added into the SEM calculated data to simulate
the error of measurement:

> re)=0 (8)

i=1

> F@)r; — 1) = 2D3(7) (8b)

i=1

o=

D=n

1
— > (8¢)

i=1

where n = 5%. Thesetrue crack parametersare regardedas unknown
when the damage detection is carried out.

For applyingthe proposed pGA, a proper error norm is selected to
formulate the present damage detection into an optimization prob-
lem. Equation (2a) is used in this example for the noise is rela-
tively weak by glancing at the response data. When noise becomes
stronger, Eq. (2b) is recommended for use because it has the better
stability. This formulated objective function is the fitness function
used in the pGA.

The searching range of three crack parameters, a., d., and [, is
set to be within [0, 10H ], [0.042H, 0.5H], and [0.2H, 5H] for
the horizontal crack case and [0, 10H], [0, 0.5H], and [0.042H,
0.96H ] for the vertical crack case, respectively. It is decided that
the number of possibilitiesfor the three crack parameters are 32,768,
12, and 32,768 for the horizontal crack case, and 32,768, 32,768,
and 24 for the vertical crack case, respectively. So the numbers
of possible solutions for this detection problem are approximately
1.29 x 10" and 2.56 x 10'° for the horizontal and vertical crack
cases, respectively. Clearly this search space is very large and also
with a large number of local optima similar to that shown in Fig. 2.

The pGA uses the same genetic operators in the performance
tests and the following operation parameters: N =5, peos = 0.5,
Pmutate = 0.02, igym = —10,000, y =5%, « =0.2, and g =0.5. This
means a total of five sets of crack parameters are randomly gener-
ated at first. Then they are gradually corrected with the proceeding
of the convergence of pGA, until the minimal error E(a,, d,.,[.)
among five sets of crack parameters is sufficiently small. Figure 8
shows the convergence processes of the minimal E(a,, d.,[.) and
the correspondingerrors of three crack parameters for the four simu-
lated cases. It can be seen that the pGA convergesto the satisfactory
detectionresults very fast. The maximal error of the detected crack
parameters with respect to their true values is —4.1, —4.3, —0.36,
and —0.35% at the 60th generation in the evolution process for the
four simulated cases, respectively.

V. Conclusions

In this study a method of damage detection for composite plates
using Lamb waves and the pGA is proposed. This method first
formulates the damage detection as an optimization problem of
minimizing the error between the measured and calculated surface
displacement response derived from Lamb waves. Then a projec-
tion genetic algorithm is used to solve this optimization problem
and identify the actual crack parameters. Numerical examples have
demonstratedthis method s effectiveand efficient. This providesthe
damage detection of composite plates with an alternative method.

The pGA plays a key role in the proposed detection method. It is
developed from the hybridization of the modified mGA with a pro-
jection operator and has been verified by six benchmark functions.
This pGA 1is also suitable to solve other optimization problems, and

the developed projection operator is applicable to hybridize with
other GAs in the same strategy discussed in this study.
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