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Damage Detection for Composite Plates Using Lamb
Waves and Projection Genetic Algorithm

Y. G. Xu,¤ G. R. Liu,† and Z. P. Wu‡
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A method of damage detection for composite plates using Lamb waves and a projection genetic algorithm
is investigated in this study. This method � rst formulates the damage detection as an optimization problem of
minimizing the error between the measured and calculated surface displacement response derived from Lamb
waves. The calculated response is obtained by using the strip element method with the trial crack parameters
(location, size). Then a projection genetic algorithm is used to solve the optimization problem and thus identify
the actual crack parameters. The projection genetic algorithm is developed from the hybridizationof the modi� ed
micro-genetic algorithm with a projection operator. It has an excellent convergence performance, taking only
9.9 » » 14.2% of the number of function evaluationsrequired by the conventional micro-genetic algorithm to obtain
the global optima for six benchmark functions. Numerical examples are presented to verify the proposed method
for detection of cracks inside composite plates. The maximalerror of detected crack parameters is ¡ ¡ 4.3% for four
simulated cases, which is achieved by running only 60 generations of projection genetic algorithm.

Nomenclature
A0 , A1 , A2 , M = coef� cient matrices
ac , dc , lc = horizontal location, depth, and length

of crack, respectively
c = better individual of c1 and c2

c1, c2 = individuals obtained from local
optimizer

Dk , dk
i j = elastic constant matrix and elastic

constants for kth element, respectively
E.ac, dc, lc/ = error of displacement response, also

used as � tness function
fi .ac , dc , lc/, f m

i = calculated and measured surface
displacement responses at i th point,
respectively

f .¢/ = � tness function or objective function
H , m = thickness of plate and number

of laminates, respectively
idum = initial random number seed
i p = position of gene that is different from

that in chromosome under comparison
K = stiffness matrix
L = differential operator matrix
N = population size
Np = number of points at surface of plate
n = number of parameters of each individual
ngj = number of genes in j th substring

corresponding to j th parameter
npGA, nmGA, nhGA = numbers of generations required

to obtain global optimum when using
pGA, mGA, and hGA, respectively
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NnpGA, NnhGA, NnmGA = means of npGA, nmGA, nhGA, respectively
P. j/, C. j/, Ch. j/ = population of individuals, offspring,

and updated offspring at j th generation,
respectively.

pcross, pmutate = possibilities of crossover and mutation
operation, respectively

pji, cji, i D 1; : : : ; N = i th individual and i th offspring at j th
generation, respectively

pb
j , ps

j , pb
j ¡ 1 = best individual, second best individual

at j th generation and best individual
at ( j ¡ 1)th generation, respectively

Q, V = vectors of external load amplitude and
displacement amplitude, respectively

q.t/, q0 , ! = time-harmonic load, load amplitude
and frequency, respectively

R, S = vectors of stress and equivalent external
force, respectively

RmGA, RhGA = ratios; RhGA D .5 £ NnpGA/=.7 £ NnhGA/,
RmGA D .5 £ NnpGA/=.7 £ NnmGA/

t = time
Uk = vector of displacements at kth element
u.x; z/, w.x; z/ = displacements in x and z direction,

respectively
x ,y,z = coordinate system for composite plate
®,¯ = coef� cients of extrapolation

and interpolation, respectively
° = threshold to de� ne population

convergence
±.¿ / = Dirac’s impulse function
´, 0.x/ = noise length and noise at point x ,

respectively

I. Introduction

D AMAGE detection of composite structures has become a very
active topic in recent years.1 Varied detection techniqueshave

been developed so far,1;2 among which elastic waves based meth-
ods have been receiving the increasingattention.3 A lot of work has
been carried out to reveal the relationship between the character of
elastic wave scattering and the location and size of cracks inside
the composite plates. For example, Karunasena et al.4 studied the
plane-strain-wavescattering by cracks and obtained the dispersion
equationsforLamb waves. Datta et al.5 investigatedthe scatteringof
Lamb waves caused by cracks and � aws in plates. Karim et al.6 did
the similar work by combining the � nite elementmethodand guided
wave mode expansions.Liu et al.7 studied the transient scatteringof
Lamb waves by a surface-breakingcrack using both analytical and
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experimentalmethods.Liu and colleagues8;9 and Lam et al.10 inves-
tigated the characterizationof both horizontal and vertical cracks in
the composite plates subjected to a moving or � xed source load.
All of these works have shown that the scattered elastic waves are
really related to the location and size of cracks inside the composite
plates. Thus, if a scattered elastic wave � eld can be experimen-
tally measured, detection of the damages in composite plates can
be transferred as an optimization problem of � nding a set of crack
parameters (location, size) that yields the best match with the mea-
sured elastic wave � eld.

As therelationshipbetweenthecrackparametersand the scattered
elastic wave � eld is hardly possible to express in an explicit form
for such complex a dynamics problem of wave propagation, the
search space of crack parameters is generally highly nonlinear, and
multimodal, advanced optimization algorithms are thus critical to
solve this complex problem and obtain the correspondingdetection
results.

Hybrid genetic algorithms (GAs) have been known as a powerful
tool to solve the nonlinear,multimodal, and nondifferentiableprob-
lems in recent years.11 A genetic algorithm is good at global search
but slow to converge, whereas a local search is good at � ne tuning
of the solution but often falls into local optima. The hybrid GAs
of combining the conventional GAs and local search techniques
can compensate their individualweak points and outperform either
one individually.With the development of varied hybrid GAs,11¡13

the present authors have proposed an effective algorithm called an
hGA.14 This algorithm is derived from the hybridization of a mod-
i� ed micro-genetic algorithm (mGA) with a local optimizer. The
“micro” means this genetic algorithm uses only a very small pop-
ulation size (typically 5 » 8).15 The local optimizer is one of direct
searchtechniques.It � nds theevenbettersolutionsby jumpingalong
the move direction of best individual. One individual in the GAs
means a possible solution of optimization problem, that is, a set of
crack parameters for the present detection problem. Test functions
and application examples have shown that this hGA has an excel-
lent convergence performance over the conventional GAs without
incorporating with the local optimizer and also has a good com-
putational ef� ciency when compared with the other hybrid GAs.14

Nevertheless, there is likely a situation in which this hGA does not
perform particularly well. That is, when the individual pb

j is identi-
cal to pb

j ¡ 1 at the j th generation in the evolution process the local
optimizer fails to � nd the new individuals different from those in
the C. j/. This would decrease the population diversity and also in-
crease the unnecessary evaluations for the same individuals in one
generation.

In this study, improvements for the previouslyproposedhGA are
made to overcometheseproblemsand further increasethe searching
ef� ciency of algorithm, including the following:

1) The local optimizer is improved by using an alternativeway to
construct the move direction of beset individual so that it can � nd
the even better individuals different from those in the C. j/ with
a signi� cantly increased possibility. That is, the move direction of
best individual is made by using either pb

j and pb
j ¡ 1 or pb

j and ps
j

when pb
j is identical to pb

j ¡ 1.
2) Only the best one of two new individuals obtained from the

local optimizer is used to replace the worst individual in the cur-
rent C. j/ to implement the hybridizationprocess.This is obviously
bene� cial to avoiding the decrease of population diversity caused
by the insertion of two new individuals that are close to each other
and also bene� cial to decreasing the population size.

3) Mutation operation is employed in the evolution process to in-
crease the population diversity. This is especially bene� cial for the
case the improved local optimizer fails to � nd the new individuals
different from those in the C. j/ when pb

j , pb
j ¡ 1 , and ps

j are all iden-
tical. This new hybrid GA is termed as a projection GA (pGA) for
the improved local optimizer is taken as a projectionoperator in the
evolution process. Performance test using six benchmark functions
has shown that this pGA has excellent convergence performance
over the conventionalmGA as well as the previous hGA.

Detection method based on the use of this pGA is veri� ed by
numerical examples. It has been found that this method is very
effectiveand ef� cient for the damage detectionof compositeplates.

II. Formulation of Damage Detection
as Optimization Problem

A. Statement of the Problem
Figure 1 shows a composite plate under investigation. It is

assumed to occupy the region ¡1 · .x; y/ · 1 and ¡H=2 ·
z · H=2. A horizontal or vertical crack is hidden inside this plate,
whereby its location and size are de� ned by three parametersac , dc ,
and lc . The crack is considered to be in� nite in the y direction to
simplify the problem into a two-dimensionalproblem.

A time-harmonicload q.t/ is appliedon the uppersurfaceof plate
in order to excite the elastic waves propagatedinside this plate. This
load is also assumed not to vary in the y direction. It is expressedas

q.t/ D q0e
¡i!t (1)

The surface displacementresponseconsists of a number of Lamb
waves scattered by the hidden cracks.8 It carries the information
about the locationand size of crack and thus can be used as a feature
information for damage detection.

B. Objective Function
With the use of well-known error norms,16 the crack detection

problem is formulated as an optimizationproblem with the follow-
ing objective function:

min E.ac; dc; lc/ D
N pX

i D 1

­­fi .ac; dc; lc/ ¡ f m
i

­­

i D 1; : : : ; Np (2a)

or

min E.ac; dc; lc/ D

"
NpX

i D 1

­­fi .ac; dc; lc/ ¡ f m
i

­­2

# 1
2

i D 1; : : : ; Np (2b)

s.t.

0 · ac · 10H; 0 · dc · H; 0 · lc · 10H

for horizontal crack

0 · ac · 10H; 0 · dc · H; 0 · lc · H

for vertical crack

Comparatively, Eq. (2a) is more sensitive to the spatial distribution
of data, whereas Eq. (2b) is more stability in noisy environment.16

Both of them mean that if a set of crack parameters, ac, dc, and lc ,
can generate the displacement response very close to the measured
value, this set of crack parameters can be taken as the actual crack

a) Horizontal crack

b) Vertical crack

Fig. 1 An m-layer composite plate with a embedded crack.
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Fig. 2 Search space for two crack parameters within domain ac +
lc <– 10H, dc = 1:67H.

parameters. It is notable that the search space for the actual crack
parameters is very complex. As an example, Fig. 2 presents a two-
dimensionalsketch of E.ac; dc; lc/ calculated from Eq. (2b), where
the true crack parameters are ac D 4H , dc D 0:167H , and lc D 2H .

C. Brie� ng on Calculation of fi(ac; dc; lc )
As it is hardly possible to calculate fi .ac; dc; lc/ by an analytic

expression for such complex a dynamic problem of wave propaga-
tion, numerical methods had to be used. The strip element method
(SEM), beingveri� ed to be especiallyeffectivefor mechanicalanal-
ysis of composite plates,17 has been used to this end. The procedure
of using the SEM to calculate fi .ac; dc; lc/ is brie� y outlined as
follows:

1) Divide the inspecteddomainof compositeplate into some strip
elements in the z direction.In each strip element, saying the element
k, and expressing the system of governing different equations (no
body force) as

½k
RUk ¡ LT DkLUk D 0 (3)

where UT
k D fu.x; z/; w.x; z/g; Dk D fd k

i j g, i , j D 1; 2; 3; L can be
found in Ref. 17.

2) Express Uk in a discreteformusing the interpolationfunctions.
Then the principleof virtualwork is applied for the discretizedgov-
erning equation. This results in a one-dimensional-reduced differ-
ential equation. By assembling these differential equations for all
of the strip elements, a set of second-order approximate govern-
ing differential equations for the inspected domain is obtained as
follows:

Q D ¡A2
@2V
@x2

C A1
@V
@x

C A0V ¡ !2MV (4)

Both Q and V are acting on the element node lines along the x
direction. Matrices Ai .i D 0; 1; 2/ and M can be found in Ref. 17.

3) Solve the preceding equation in an analytical method. This
results in a set of linear equationsthat gives the relationshipbetween
the displacementsV and stressesR at the nodalpointson the vertical
boundaries.

R D KV C S (5)

Matrix K can been also found in Ref. 9.
4) For the plates hiding the horizontalcracks, it is usually divided

into four subdomains, I, II, III, and IV, as shown in Fig. 1a. Each
subdomain corresponds to a set of equations similar to Eq. (5).
By assembling all of the four sets of equations and solving the
integratedequation,elasticwave � eld and the surfacedisplacements
are obtained.3

5) For the plates hiding the vertical cracks, it is usually divided
into two subdomains, I and II, as shown in Fig. 1b. The surface
displacements are obtained similarly to the horizontal crack case.10

III. Projection Genetic Algorithm (pGA)
A. Description of the pGA
1. Modi�ed mGA

mGA is one of improved GAs.15;18 It usually operates on a very
small population.The smallpopulationveryoftenconvergesin a few
generations.When the convergencetakes place, a restart strategy is
implemented to generate a new population with the same size. This
new population consists of the best individual from the previously
converged generation and other randomly generated ones. Gener-
ally, mGA does not require the use of mutation operation.15;19 The
genetic diversity is introduced and maintained by using the restart
strategy.

The modi� ed mGA uses an improvedcriterionto de� ne the popu-
lation convergence.14 This new criterion takes into account not only
the number of the genes that are different from each other in two
compared individualsbut also their positions in the chromosome. It
is expressed as

N ¡ 1X

k D 1

nX

j D 1

ngjX

i p D 1

2i p

.N ¡ 1/
Pn

j D 1
ngj.ngj C 1/

· ° (6)

i p counts from right to left for the substrings under comparison.
Generally, ° is recommended to be within 5 » 10% (Ref. 14).

2. Projection Operator
Projectionoperatoraims to � nd an evenbetter individualby jump-

ing along the move direction of best individual at each of genera-
tions so as to improve the convergence of algorithm. It is a direct
local optimizer and requires no use of function evaluations. Gen-
erally, this direct optimizer is less ef� cient than the conventional
gradient-basedoptimizers in the caseswhere the objectivefunctions
are differential.20 However, it is a preferable choice in the hybrid
GAs because of its simplicity in implementation and suitability for
many practical problems, where the derivative information is often
different, computationallyexpensive, or even impossible to obtain.

Construction of the move direction of best individual is a key of
implementing projection operator. In this study an alternative way
is employed, in which pb

j and pb
j ¡ 1 are used only if they are not

identical. Otherwise, pb
j and ps

j should be used instead.This means
that the better individual c is obtained by

f .c/ D maxf f .c1/; f .c2/g; c 2 fc1; c2g (7a)

c1 D pb
j C ®

¡
pb

j ¡ p
¢

(7b)

c2 D pb
j ¡ 1 C ¯

¡
pb

j ¡ p
¢

(7c)

p D

(
pb

j ¡ 1; pb
j 6D pb

j ¡ 1

ps
j ; pb

j D pb
j ¡ 1 (7d)

where® and ¯ are recommendedto be within 0.1 » 05and0.3 » 0.7,
respectively. It is clear that ® and ¯ decide how far the newly gen-
erated individual c is from the present best individual pb

j . Selection
of ® and ¯ has an obvious effect on the convergence process of
pGA. Detailed discussionon this point is addressed in the following
examples.

3. Hybridization of Modi�ed mGA with Projection Operator
This can be outlined as follows:
1) Let j D 0, randomly initialize P. j/ D . p j1; p j2; : : : ; p jN/.

Every individual pji.i D 1; : : : ; N / is a possible solution. It is a set
of crack parameters for the present detection problem.

2) Evaluate the � tness or objective function values of P. j/.
3) Check the termination condition. If “yes,” the process ends.

Otherwise, j D j C 1 and go to the next step.
4) Carry out the conventional genetic operations:niching, selec-

tion, crossover, mutation, and elitism. These operations result in a
new generationof solutions.Details on theiroperationscan be found
in the general literature on GAs.11;12;15

5) Generate offspring C. j/ D .c j1; c j2; : : : ; c jN/ and evaluate
their � tness values. Each of offspring is one of newly generated
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Fig. 3 Flowchart of the pGA.

solutions, that is, a new set of crack parameters for the detection
problem. They are expected to be more close to the global optimum
than those in the P. j/.

6) Carry out the projection operator. a) construct the move di-
rection of best individual using Eq. (7b) » (7d); b) generate the
individualsc1 , c2 , and evaluate their � tness values; and c) select the
better individual c.

7) Replace the worst individual in the C. j/ with the individual c.
This results in a updated offspring Ch. j/ D .c j1; c j2; : : : ; c; : : : ;
cjN ¡ 1/.

8) Check whether there occurs the populationconvergencein the
Ch. j/. If “yes,” implement restarting strategy. Otherwise, go back
to step 3.

This process is depicted in Fig. 3. Basically, this pGA takes the
same strategyin incorporatingthe localoptimizer into the basic loop
of mGA as that done in the previous hGA.14 It thus maintains the
main advantagesofhGA: 1)much lesscomputationeffort is required
in the projection operator: 2) the incorporated projection operator
affectsthe evolutionprocessin a self-adaptivemannerso as to ensure
that the searching is global and the converging is fast; and 3) the
hybridizationprocess is straightforwardso that it is conventionalto
use in engineering practice.

B. Performance Test
1. Test Functions

Six benchmark functions are used to test the proposed pGA.14

They are

F1: f .x1; x2/ D
2Y

i D 1

sin.5:1¼xi C 0:5/6

£ exp
¡4 log 2.xi ¡ 0:0667/2

0:64

¼ D 3:14159; 0 < xi < 1:0; i D 1; 2

F2: f .x1; x2/ D
5X

i D 1

i cos[.i C 1/x1 C i ]
5X

i D 1

i cos[.i C 1/x2 C i ]

¡10 < xi < 10; i D 1; 2

F3: f .x1; x2/ D
x2

1

4
¡

x2
1

2
C

x1

10
C

x2
2

2

¡10 < xi < 10; i D 1; 2

F4: f .x1; x2; x3/ D
3X

i D 1

h¡
x1 ¡ x2

i

¢2 C .xi ¡ 1/2
i

¡5 < xi < 5; i D 1; 2; 3

F5: f .x1; x2; x3/ D
3X

i D 1

h¡
ax1 ¡ bx2

i

¢2 C .cxi ¡ d/2
i

0:999 · a; b; c; d · 1:001 randomly; ¡5 < xi < 5; i D 1; 2; 3

F6: f .x1; x2; x3; x4/ D
5X

i D 1

1
P4

j D 1[x j ¡ d.i; j/]2 C c.i/

d[4; 5] D .4; 4; 4; 4I 1; 1; 1; 1I 8; 8; 8; 8I 6; 6; 6; 6I 3; 7; 3; 7/;

c[5] D .0:1; 0:2; 0:2; 0:4; 0:4/; 0 < xi < 10; i D 1; 2; 3; 4

These functions have been specially designed for testing various
GAs. They have many local optima and one or more global optima
(Table 1). As an example, Fig. 4 shows the search space of function
F1.

2. Convergence Performance of the pGA
Convergence performanceof the pGA is investigated in terms of

thenumberof generations(or timesof functionevaluations) required
to obtain the global optimum for the above benchmark functions.
To make the results meaningful statistically, each of benchmark
functions is tested for 40 times using the pGA with the different

Table 1 Convergence performance of the pGA and comparison
with the hGA and mGA

Global Function RhGA, RmGA ,
No. optimum value NnpGA NnhGA NnmGA % %

F1 (0.0669, 0.0669) 1.0 158 189 984 59.7 11.5
F2 (5.4829, ¡1.4265)a ¡186.73 185 348 1136 38.0 11.6
F3 (¡1.0467, 0.0) ¡0.352 175 437 983 28.6 12.7
F4 (1.0, 1.0, 1.0) 0.0 261 544 1561 34.3 11.9
F5 (1.0, 1.0, 1.0) 0.0 229 583 1648 28.1 9.9
F6 (4.0, 4.0, 4.0, 4.0) ¡10.153 652 1195 3271 39.0 14.2

aOne of global optima.

Fig. 4 Function F1.
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combinations of ®, ¯ , and idum . These combinationsare sampled at
® D 0:1, 0.3; ¯ D 0:5, 0.618; and idum D ¡100, ¡5000, ¡10,000,
¡15,000, ¡20,000, ¡30,000, ¡35,000, ¡40,000, ¡45,000, and
¡50,000 using the full fractional combinationmethod. The genetic
operatorsandotheroperationparametersusedare uniformcrossover
of pcross D 0:5, mutationof pmutate D 0:02, tournamentselection,one
child, niching,15 elitism,15 N D 5, and ° D 5%. Table 1 shows the
mean number of generations ( NnpGA) to obtain the global optimum
for six benchmark functions.

To have appropriate comparison, the hGA and mGA are also
run for 40 times with genetic operators and operation parameters
similarly to those of pGA (except for N D 7) for the six functions
just used. The corresponding results ( NnhGA, NnmGA) are also shown
in Table 1. It can be found that the present pGA demonstrates a
much faster convergencethan the conventionalmGA as well as the
preceding hGA. It takes only 9.9 » 14.2% (or 28.1 » 59.7%) of the
number of function evaluations required by the mGA (or the hGA)
to obtain the global optimum for the given benchmark functions.
Figure 5 shows the convergence processes of functions F3 and F6
using the pGA against the hGA and mGA, from which the evolution
processes can be seen clearly.

3. Effect of the Mutation Operation
Traditionally, the mutation operation is not used in the

mGA.15;18;19 However, it is recommended to apply in the pGA for
increasingthepopulationdiversity.For testingthe effectof themuta-
tion operation, the preceding benchmark functions are investigated
using the pGA with and without mutation operation, respectively.
It can be found from Table 2 that the pGA with the mutation opera-

Table 2 Effect of mutation operator on the performance of pGAa

Scheme F1 F2 F3 F4 F5 F6

npGA, mutation 97 126 104 173 170 412
npGA, no mutation 107 156 116 352 417 >1000
Ratio, % 90.7 80.8 89.7 49.1 40.8 <41.2

a® D 0:2, ¯ D 0:5, and idum D ¡10,000.

Function F3

Function F6

Fig. 5 Convergence processes of the pGA for benchmark function F3
and F6.

Table 3 Effect of coef� cient ® on the performance of pGAa

® 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

npGA, mutation 147 86 50 119 38 81 63 56
npGA, no mutation 149 109 86 130 44 91 74 91
Ratio, % 98.7 78.9 89.3 91.5 86.4 89.0 85.1 61.5

aFor function F1 where ¯ D 0:5 and idum D ¡10,000.

Table 4 Effect of coef� cient ¯ on the performance of pGAa

¯ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

npGA, mutation 486 217 70 86 80 164 372 243
npGA, no mutation 121 106 98 109 94 74 109 99
Ratio, % 401.6 204.7 71.4 78.9 85.1 221.6 341.3 245.5

aFor function F1 where ® D 0:2 and idum D ¡10,000.

Table 5 Effect of the random number seed idum on the performance
of pGA and mGA

idum (£ ¡102 ) 1 50 100 150 200 300 350 400 450 500

npGA, mutation 245 164 97 150 196 229 60 175 67 197
npGA, no mutation 279 230 107 77 186 238 185 128 395 199
nmGA 823 2741 1229 1512 1105 240 1043 415 526 208

Effect of ®: ¯ = 0.5 and idum = ¡ 10,000

Effect of ¯: ® = 0.2 and idum = ¡ 10,000

Fig. 6 Effects of coef� cients ® and ¯ on the convergence processes of
pGA for benchmark function F1.

tion � nds the global optimum faster than that without the mutation
operation for all of the benchmark functions. Further investigations
on the effect of the mutation operation associatedwith the variation
of ®, ¯, and idum are also performed, and the results are given in
Tables 3–5.

4. Effect of the Coef� cients ® and ¯

To study the effectof ® and ¯ on the pGA, benchmarkfunctionF1
is investigatedagainusing thedifferent® and¯ , but the same genetic
operators and other operation parameters (idum D ¡10,000). Two
schemes of the pGA with and without mutation operation are used.
It has been found from Tables3 and 4 that npGA correspondingto the
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different® (® D 0:1 » 0:8, ¯ D 0:5) ranges from 38 to 147, whereas
that correspondingto the different¯ (¯ D 0:2 » 0:9, ® D 0:2) ranges
from 70 to 243. Figure 6 shows their convergenceprocesses.

Further investigation has shown that it is dif� cult to specify ex-
actly the value of ® and ¯ that can get the best convergence per-
formance for all of the benchmark functions. However, it has been
foundthat anycombinationof® and¯ alwaysresultsin thepGAhav-
ing a signi� cantly fast convergenceover the conventionalmGA us-
ing the same geneticoperatorsand operationparameters.It is recom-
mended in this study that ® and ¯ are within 0.1 » 05 and 0.3 » 0.7,
respectively.Our favoritechoiceis ® D 0:1 » 0:3 and¯ D 0:5, which
generally ends in good results in our numerical experiments.

5. Effect of the Random Number Seed idum

A total of 10 different idum has been used to investigate the con-
vergence performance of pGA. The 10 idum are all selected to be
negative according to the suggestion made by Carroll15;19 in a pub-
lic version (1.7) of the GA program. To show the effect of idum,
Table 5 presents the corresponding npGA and nmGA for function F1
when pGA and mGA use the different idum . In these investigations,
both the genetic operators and the operation parameters remain the
same (® D 0:2, ¯ D 0:5). From Table 5 it can be found that the pGA
is not as sensitiveas the mGA to idum. The ratio of the maximal npGA

to the minimal npGA is about four.This feature makes the pGA more
robust to use in practice.

IV. Numerical Examples
A composite plate [C90/G45/G-45]s with six symmetrically

stacked layers is used in this study to demonstrate the detection
of crack using the proposed pGA. C and G stand for carbon/epoxy
and glass/epoxy layers, respectively. The next number denotes the
� ber orientation with respect to the x axis. Material constants of
carbon/epoxy and glass/epoxy are given in Table 6.

Each layer in this plate is divided into four strips in the z di-
rection for the use of the SEM. The horizontal cracks are assumed
to locate at the junctions of two adjacent strip elements, whereas
the vertical cracks are assumed to be throughout several successive
strip elements. All of them are within the region 0 · x · 10H and
0 · z · H .

We assumed that there are four sets of surface displacement re-
sponsesexperimentallymeasuredat 250 pointson the surfaceof this
plate (Fig. 7), corresponding to four crack cases. These responses
are excited by an external load q.t/ at x D 0 having the amplitude
q0 D 1 and the normalized frequency ! D [3:14

p
.c44=½/]=H . The

pGA is used to detect these “unknown” crack parameters from the
“measured” responses.

The true crack parameters are (I) horizontal crack: ac D 6:0H ,
dc D 0:25H , lc D 1:0H ; (II) horizontal crack: ac D 4:0H , dc D

Fig. 7 “Experimentally”measured displacement responses on the sur-
face of plate for four crack cases (noise length is 5%).

Table 6 Material constants of composite plate

Component E1 , GPa E2 , GPa G12, GPa v12 v23 ½, g/cm3

Carbon/epoxy 142.17 9.255 4.795 0.3340 0.4862 1.90
Glass/epoxy 38.49 9.367 3.414 0.2912 0.5071 2.66

Crack case I

Crack case II

Crack case III

Crack case IV

Fig. 8 Convergence processes of the pGA for detection of four simu-
lated crack cases.



1866 XU, LIU, AND WU

0:333H , lc D 1:2H ; (III) vertical crack: ac D 4:0H , dc D 0:166H ,
lc D 0:667H ; and (IV) vertical crack: ac D 5:0H , dc D 0:125H ,
lc D 0:75H . The measured displacementresponsesare actuallysim-
ulated using the SEM code for these true crack parameters.A noise
0.x/ de� ned later is added into the SEM calculateddata to simulate
the error of measurement:

nX

i D 1

0.xi / D 0 (8a)

nX

i D 1

0.xi /0.xi ¡ ¿ / D 2D±.¿ / (8b)

D D ´

³
1

n ¡ 1

nX

i D 1

x2
i

´1
2

(8c)

where´ D 5%. Thesetruecrackparametersare regardedasunknown
when the damage detection is carried out.

For applyingthe proposedpGA, a propererror norm is selectedto
formulate the present damage detection into an optimization prob-
lem. Equation (2a) is used in this example for the noise is rela-
tively weak by glancing at the response data. When noise becomes
stronger, Eq. (2b) is recommended for use because it has the better
stability. This formulated objective function is the � tness function
used in the pGA.

The searching range of three crack parameters, ac , dc, and lc, is
set to be within [0, 10H ], [0.042H , 0.5H ], and [0.2H , 5H ] for
the horizontal crack case and [0, 10H ], [0, 0.5H ], and [0.042H ,
0.96H ] for the vertical crack case, respectively. It is decided that
the numberof possibilitiesfor the three crackparametersare32,768,
12, and 32,768 for the horizontal crack case, and 32,768, 32,768,
and 24 for the vertical crack case, respectively. So the numbers
of possible solutions for this detection problem are approximately
1:29 £ 1010 and 2:56 £ 1010 for the horizontal and vertical crack
cases, respectively. Clearly this search space is very large and also
with a large number of local optima similar to that shown in Fig. 2.

The pGA uses the same genetic operators in the performance
tests and the following operation parameters: N D 5, pcross D 0:5,
pmutate D 0:02, idum D ¡10,000, ° D 5%, ® D 0:2, and ¯ D 0:5. This
means a total of � ve sets of crack parameters are randomly gener-
ated at � rst. Then they are gradually corrected with the proceeding
of the convergence of pGA, until the minimal error E.ac; dc; lc/
among � ve sets of crack parameters is suf� ciently small. Figure 8
shows the convergence processes of the minimal E.ac; dc; lc/ and
the correspondingerrorsof three crackparametersfor the foursimu-
lated cases. It can be seen that the pGA converges to the satisfactory
detection results very fast. The maximal error of the detected crack
parameters with respect to their true values is ¡4.1, ¡4.3, ¡0.36,
and ¡0.35% at the 60th generation in the evolution process for the
four simulated cases, respectively.

V. Conclusions
In this study a method of damage detection for composite plates

using Lamb waves and the pGA is proposed. This method � rst
formulates the damage detection as an optimization problem of
minimizing the error between the measured and calculated surface
displacement response derived from Lamb waves. Then a projec-
tion genetic algorithm is used to solve this optimization problem
and identify the actual crack parameters. Numerical examples have
demonstratedthismethod is effectiveand ef� cient.This providesthe
damage detection of composite plates with an alternative method.

The pGA plays a key role in the proposed detection method. It is
developed from the hybridizationof the modi� ed mGA with a pro-
jection operator and has been veri� ed by six benchmark functions.
This pGA is also suitable to solve other optimizationproblems, and

the developed projection operator is applicable to hybridize with
other GAs in the same strategy discussed in this study.
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